jika a dan b adalah akar akar persamaan kuadrat

x²- (a + b)x + a.b = 0. x² - (8)x + 8 = 0. x² - 8x + 8 = 0. Jadi, persamaan kuadrat yang akar-akarnya a² + 1 dan b² + 1 adalah x² - 8x + 8 = 0, Jawabannya ( D ). Itulah pembahasan soal dengan materi mencari persamaan kuadrat baru, semoga bermanfaat dan mudah untuk dipahami. Jawabanpaling sesuai dengan pertanyaan Diketahui persamaan kuadrat x^(2)+ax+(1-a)=0 dan akar-akarnya x_(1) dan x_(2). Jika (1)/(x Persamaankuadrat dengan variabel x dinyatakan dalam bentuk umum sebagai berikut : $$\mathrm{ax^{2}+bx+c=0}$$ dengan a, b, c bilangan real dan a ≠ 0 Penyelesaian dari suatu persamaan kuadrat disebut akar-akar persamaan kuadrat, yaitu nilai-nilai x yang memenuhi persamaan kuadrat tersebut atau dengan kata lain, nilai-nilai x yang menyebabkan disini ada pertanyaan Jika a dan b adalah akar-akar persamaan kuadrat dari ini dan diberikan bahwa P + 2 B = 25 maka A min b nya berapa a dan b adalah akar-akar Nya maka a + b jadi X1 + X2 jadi kalau kita punya a kuadrat + b + c maka X1 kalau akar-akarnya adalah x1 dan x2 maka X1 + X2 min b per a 1 kali itu acara2 tidak Hal ini a + b nya adalah min b per A min min b b adalah koefisien dari x nya timin dari - 13 aPerkoppi tenis badannya 1 gadis ini adalah 13 a sehingga dari sini betenya. Dengana, b, merupakan koefisien, dan c adalah konstanta, serta a ≠ 0. Akar persamaan kuadrat ax² + bx + c = 0 adalah nilai x yang memenuhi persamaan kuadrat tersebut, atau dengan kata lain nilai-nilai x yang menyebabkan persamaan kuadrat tersebut bernilai benar. Sebagai contoh, akar-akar persamaan kuadrat x² - 4x + 3 = 0 adalah 1 atau 3. Verheiratete Frau Flirtet Mit Verheiratetem Mann. A. Pengertian Persamaan Kuadrat atau Quadratic Equation Persamaan kuadrat adalah bentuk persamaan matematika dengan derajat dua, sehingga mempunyai suku dengan variabel berpangkat dua. Dalam bahasa inggris persamaan kuadrat disebut dengan "Quadratic Equation". Suatu persamaan disebut persamaan kuadrat saat mempunyai suku dengan pangkat variabel tertinggi dua. Navigasi Cepat A. Pengertian Persamaan Kuadrat B. Bentuk Umum C. Akar-Akar Persamaan Kuadrat D. Cara Menghitung Akar Persamaan Kuadrat D1. Faktorisasi D2. Melengkapi Kuadrat Sempurna D3. Rumus ABC D4. Solusi Nol Persamaan ax² = 0 E. Persamaan Kuadrat sebagai Model Non-Linier Berikut bentuk umum rumus persamaan kuadrat. dengan a = koefisien variabel x² b = koefisien variabel x c = nilai suatu konstanta dengan a ≠ 0 Bentuk di atas juga disebut dengan bentuk kuadrat trinomial, karena mempunyai 3 istilah suku yang berbeda dalam persamaannya. Berikut tabel contoh yang menyatakan suatu bentuk kuadrat Contoh Ya/Tidak Penjelasan 2x² + 3x + 2 = 0 Ya a = 2; b = 3; c = 0 x² + x - 1 = 0 Ya a = 1; b = 1; c = -1 -3x² + 2 = 0 Ya a = -3; b = 0; c = 2 2x² + 3x = 0 Ya a = 2; b = 3; c = 0 3x² = 3 Ya berderajat 2 3x² + 4x² = 0 Ya berderajat 2 3x + 4 = 0 Tidak berderajat 1 3x² + 3x³ Tidak berderajat 3 Dari tabel di atas dapat diketahui suatu persamaan disebut persamaan kuadrat, jika persamaan tersebut berderajat dua. Baca juga Materi Aljabar, Bentuk Aljabar, dan Operasi Aljabar C. Akar-Akar Persamaan Kuadrat Akar-akar persamaan kuadrat adalah solusi penyelesaian dari suatu bentuk persamaan kuadrat, berupa nilai-nilai faktor persamaannya. Sehingga hasil substitusi akar-akarnya akan menghasilkan nilai nol terhadap persamaannya tidak bersisa. Persamaan kuadrat ax² + bx + c umumnya mempunyai 2 akar-akar persamaan yaitu x1 dan x2. Nilai akar-akar persamaan kuadrat di koordinat kartesius merupakan titik potong grafiknya di sumbu x. Ini dapat dibuktikan dengan substitusi nilai tersebut yang akan menghasilkan nilai nol. Grafik fungsi kuadrat dari y = x² + 6x + 8 = 0 Sebagai contoh, fungsi kuadrat y = x² + 6x + 8 = 0 mempunyai akar-akar x = -4 dan x = -2. Berikut hasil substitusi nilai akar-akarnya dalam fungsi kuadrat tersebut. Berikut substitusi nilai akar-akarnya terhadap fungsi y Substitusi x = -4 maka y = -4² + 6-4 + 8 = 0 titik -4,0 Substitusi x = -2 maka y = -2² + 6-2 + 8 = 0 titik -2,0 D. Cara Mencari Akar Persamaan Kuadrat Terdapat beberapa metode yang digunakan untuk mencari akar persamaan kuadrat. Berikut dijelaskan 3 metode yang sering digunakan untuk mencari akar persamaan kuadrat yaitu faktorisasi aljabar, melengkapi kuadrat sempurna, dan rumus ABC. D1. Faktorisasi Persamaan Kuadrat Faktorisasi persamaan kuadrat adalah dekomposisi persamaan kuadrat dengan menggunakan faktor-faktornya. Dekomposisi persamaan adalah pengubahan susunan dan struktur suatu bentuk persamaan menjadi bentuk baru yang sebanding. Faktorisasi trinomial adalah metode umum yang digunakan untuk melakukan faktorisasi persamaan kuadrat. Metode ini bekerja dengan mencari pasangan perkalian dan penjumlahan dari nilai a, b, dan c. Rumus Faktorisasi Bentuk Umum Trinomial Terdapat beberapa bentuk kuadrat yang tidak mempunyai nilai b atau c, gunakan nilai nol dalam rumus, berikut contohnya. Persamaan a b c 2x² + 3x - 4 = 0 2 3 -4 4x² + 3x = 0 4 3 0 25x² + 9 = 0 25 0 9 Tips terdapat beberapa metode faktorisasi alternatif selain metode trinomial, yang dapat digunakan untuk mempercepat perhitung bentuk persamaan kuadrat tertentu. Faktorisasi Contoh Persamaan Kuadrat Bentuk Umum Trinomial 6x² + 11x – 10 = 3x – 22x + 5 Kuadrat Murni Pure Quadratic 6x² + 9x = 3x2x + 3 Selisih Kuadrat Difference of Squares 9x² – 16y² = 3x – 4y3x + 4y Lebih lanjut Faktorisasi Trinomial, Selisih Kuadrat, dan Kuadrat Murni Alternatif Solusi Irasional atau Kompleks Penggunaan metode faktorisasi dapat menjadi sulit untuk menghitung pasangan perkalian atau penjumlahan, karena solusinya merupakan bilangan irasional dan kompleks. Kasus ini dapat dipermudah dengan menggunakan metode melengkapi kuadrat sempurna atau rumus ABC yang dijelaskan di bagian bawah. Baca juga Apa itu Bilangan Irasional dan Bilangan Kompleks? Contoh 1. Faktorisasi Persamaan Kuadrat x² + 6x + 8 = 0 Buat kesamaan bentuk dari persamaan kuadrat x² + 6x + 8 = 0 dan hitung akar persamaan kuadratnya! Diketahui x² + 6x + 8 = 0 Ditanya i Kesamaan bentuk persamaan kuadrat ii Menghitung akar-akar persamaan kuadrat Penyelesaian x² + 6x + 8 = 0 Berdasarkan bentuk umum, dapat diketahui komponen penyusun persamaan tersebut. a = 1, b = 6, dan c = 8 i Kesamaan Bentuk x² + 6x + 8 = 0 Catatan Penulisan angka 1 pada variabel x untuk memperjelas langkah, dalam praktiknya dapat tidak ditulis. ∗ Menentukan Pasangan Perkalian dan Penjumlahan * Menghitung Nilai Pasangan Perkalian dan Penjumlahan * Menyusun Kesamaan Bentuk Persamaan Kuadrat ∴ Jadi, kesamaan bentuknya adalah x + 2x + 4 = 0 ii Menghitung Akar Persamaan Kuadrat x² + 6x + 8 = 0 Dari pemaparan sebelumnya sudah diketahui bentuk kesamaannya berdasarkan faktorisasi yaitu x + 2x + 4 = 0. Sehingga diperoleh akar-akar persamaan kuadrat dengan memecah bentuk tersebut. ∴ Jadi, akar-akar persamaan kuadrat dari x² + 6x + 8 = 0 adalah x1 = -2 dan x2 = -4. Contoh 2. Faktorisasi Persamaan Kuadrat 2x² + 5x + 3 = 0 Buat kesamaan bentuk dari persamaan kuadrat 2x² + 5x + 3 = 0 dan hitung akar-akar penyelesaiannya! Diketahui 2x² + 5x + 3 = 0 Ditanya i Kesamaan bentuk persamaan kuadrat ii Menghitung akar-akar persamaan kuadrat Penyelesaian 2x² + 5x + 3 = 0 Berdasarkan bentuk umum, dapat diketahui komponen penyusun persamaan tersebut a = 2, b = 5, dan c = 3 i Kesamaan Bentuk 2x² + 5x + 3 = 0 ∗ Menentukan Pasangan Perkalian dan Penjumlahan * Menyusun Kesamaan Bentuk Persamaan Kuadrat ∴ Jadi, kesamaan bentuknya adalah x + 12x + 3 = 0 atau 2x + 3x+1 ii Menghitung Akar Persamaan Kuadrat 2x² + 5x + 3 = 0 Dari pemaparan sebelumnya sudah diketahui bentuk kesamaannya berdasarkan faktorisasi yaitu 2x + 3x + 1 = 0. Sehingga diperoleh akar-akar persamaan kuadrat dengan memecah bentuk tersebut. ∴ Jadi, akar-akar persamaan kuadrat dari 2x² + 5x + 3 = 0 adalah x1 = -1 dan x2 = -3/2. D2. Melengkapi Kuadrat Sempurna Melengkapi kuadrat sempurna adalah pengubahan bentuk suatu persamaan kuadrat ax2 + bx + c = 0 menjadi bentuk kuadrat sempurna a x + d2 + e = 0. Metode melengkapi kuadrat sempurna juga disebut dengan metode "completing the square". Untuk melengkapi persamaan kuadrat ke kuadrat sempurna perlu dihitung nilai d dan e yang memenuhinya. Rumus Melengkapi Kuadrat Sempurna Sehingga dapat dihitung akar-akarnya dengan melakukan perpindahan ruas antar variabel lalu di kuadratkan. Baca juga Materi Melengkapi Kuadrat Sempurna dan Konsep Geometri Kuadrat Sempurna Contoh 1. Kuadrat Sempurna dari x² + 6x + 8 = 0 Hitung akar-akar persamaan kuadrat x² + 6x + 8 = 0 dengan cara melengkapi kuadrat sempurna! Penyelesaian Kemudian dapat dihitung akar-akar persamaannya dari bentuk kuadrat sempurna di atas ∴ Jadi, akar-akar persamaan kuadrat dari x² + 6x + 8 = 0 adalah x1 = -2 dan x2 = -4. Contoh 2. Kuadrat Sempurna dari 2x² + 5x + 3 = 0 Hitung akar-akar persamaan 2x² + 5x + 3 = 0 dengan cara melengkapi kuadrat sempurna! Penyelesaian Kemudian dapat dihitung akar-akar persamaannya dari bentuk kuadrat sempurna di atas ∴ Jadi, akar-akar persamaan dari 2x² + 5x + 3 = 0 adalah x1 = -1 dan x2 = -3/2. Contoh 3. Kuadrat Sempurna dari x² + 2x - 1 = 0 Catatan Contoh ini akan lebih sulit jika dikerjakan dengan cara faktorisasi persamaan kuadrat. Hitung akar-akar persamaan x² + 2x - 1 = 0 dengan cara melengkapi kuadrat sempurna! Penyelesaian Kemudian dapat dihitung akar-akar persamaannya dari bentuk kuadrat sempurna di atas ∴ Jadi, akar-akar persamaan dari x² + 2x - 1 = 0 adalah x1 = 0,414213562 dan x2 = -2,414213562. D3. Rumus ABC Rumus ABC adalah rumus alternatif untuk mencari solusi akar-akar persamaan kuadrat menggunakan nilai a, b, dan c berdasarkan konsep penyempurnaan bentuk kuadrat. Jika ditelusuri lebih lanjut, rumus ini sebenarnya merupakan hasil dari metode completing the square melengkapi kuadrat sempurna. Baca juga Materi Rumus ABC, Perumusan, dan Contoh Soal Contoh 1. Hitung Akar Persamaan x² + 6x + 8 = 0 dengan Rumus ABC! Penyelesaian ∴ Jadi, akar-akar persamaan kuadrat dari x² + 6x + 8 = 0 adalah x1 = -2 dan x2 = -4. Contoh 2. Hitung Akar Persamaan x² + 2x - 1 = 0 dengan Rumus ABC! Penyelesaian ∴ Jadi, akar-akar persamaan kuadrat dari x² + 2x - 1 = 0 adalah x1 = 0,414213562 dan x2 = -2,414213562. D4. Solusi Nol Persamaan Kuadrat ax² = 0 Bentuk persamaan kuadrat ax² = 0 mempunyai solusi akar bernilai nol zero solution. Nilai solusi x1 = 0 dan x2 = 0 merupakan solusi umum persamaan kuadrat dengan bentuk ax² = 0, berikut pemaparannya. Hal ini juga dapat dibuktikan oleh grafik fungsinya dalam koordinat kartesius, maka akan memotong sumbu koordinat di titik 0, 0. Titik ini juga menjadi titik puncak grafik yang dibentuk. Contoh 1. Berapa solusi akar-akar persamaan kuadrat dari x² = 0; 2x² = 0; dan -3x² = 0 dan Buatkan grafik fungsinya? Penyelesaian Dapat diketahui titik x = 0 menghasilkan nilai y = 0 di ketiga fungsi kuadrat yang digambarkan dalam grafik, dilihat dari ketiga grafik yang memotong titik pusat 0, 0. ∴ Jadi, akar-akar ketiga persamaan kuadrat tersebut adalah x1,2 = 0. Lanjutan Fungsi Kuadrat dan Cara Membuat Grafik Fungsi Kuadrat E. Persamaan Kuadrat sebagai Pemodelan Non-Linier Bentuk variabel berpangkat dua menyebabkan persamaan kuadrat membentuk garis tidak lurus non-linier, umumnya berupa kurva. Pengaplikasiannya dapat dijadikan sebagai suatu model terhadap pemecahan kasus nyata. Beberapa contoh misalnya prediksi waktu, pengaturan resistor elektronika, hukum permintaan dalam ilmu ekonomi, dan lain-lain. Tutorial lainnya Daftar Isi Pelajaran Matematika Sekian artikel "Persamaan Kuadrat Rumus Umum, Akar Persamaan, & Contoh Soal". Nantikan artikel menarik lainnya dan mohon kesediaannya untuk share dan juga menyukai halaman Advernesia. Terima kasih... ABSTRAK Mencari akar-akar persamaan kuadrat ax 2 +bx+c = 0 dapat dilakukan dengan beberapa metode, diantaranya adalah pemfaktoran, kuadrat sempurna, rumus kuadrat. Konsep pemfaktoran dengan menentukan faktor dari perkalian a dan c pada persamaan ax 2  bx  c kemudian mencari jumlah dari faktor a dan c yang sama dengan nilai b pada persamaan kuadrat. Ada metode lain untuk menyelesaikan akar-akar persamaan kuadrat yaitu metode transformasi dan metode silang. Kata Kunci Akar-akar persamaan kuadrat, pemfaktoran, persamaan kuadrat ABSTRACT Finding the roots of the quadratic equation ax2 + bx + c = 0 can be done by several methods, including factorizing, completed quadrate, quadrate formula. Factorization concept it is done by determining the factor from the multiplication of a and c in equation ax2 bx  c then, find the summation of a and c equal with b in the quadrate equation. There are other methods to solve the roots of quadratic equations, namely the transformation method and the cross method. Keywords Equation of quadrate-root, factorization, and quadrate equation. PENDAHULUAN Banyak permasalahan dalam kehidupan yang pemecahannya terkait dengan konsep dan aturan-aturan dalam matematika. Secara khusus keterkaitan konsep dan prinsip-prinsip persamaan kuadrat, sering kita temukan dalam permasalahan kehidupan nyata yang menyatu/bersumber dari fakta dan lingkungan budaya kita. Konsep persamaan kuadrat dapat dibangun/ditemukan di dalam pemecahan permasalahan yang kita hadapi. METODE PENELITIAN Metode penelitian yang digunakan dalam penelitian adalah studi literatur. Menurut Danial dan Warsiah, Studi Literatur adalah merupakan penelitian yang dilakukan oleh peneliti dengan mengumpulkan sejumlah buku buku, majalah yang berkaitan dengan masalah dan tujuan penelitian. Dalam penelitian ini menggunakan teorema-teorema yang berlaku pada konsep persamaan kuadrat. Discover the world's research25+ million members160+ million publication billion citationsJoin for free METODE UNTUK MENENTUKAN AKAR-AKAR PERSAMAAN KUADRAT Nabilla Shafira Mahasiswa Program Studi Pendidikan Matematika, Universitas Negeri Medan Email ABSTRAK Mencari akar-akar persamaan kuadrat ax2+bx+c = 0 dapat dilakukan dengan beberapa metode, diantaranya adalah pemfaktoran, kuadrat sempurna, rumus kuadrat. Konsep pemfaktoran dengan menentukan faktor dari perkalian a dan c pada persamaan ax2  bx  c kemudian mencari jumlah dari faktor a dan c yang sama dengan nilai b pada persamaan kuadrat. Ada metode lain untuk menyelesaikan akar-akar persamaan kuadrat yaitu metode transformasi dan metode silang. Kata Kunci Akar-akar persamaan kuadrat, pemfaktoran, persamaan kuadrat ABSTRACT Finding the roots of the quadratic equation ax2 + bx + c = 0 can be done by several methods, including factorizing, completed quadrate, quadrate formula. Factorization concept it is done by determining the factor from the multiplication of a and c in equation ax2 bx  c then, find the summation of a and c equal with b in the quadrate equation. There are other methods to solve the roots of quadratic equations, namely the transformation method and the cross method. Keywords Equation of quadrate-root, factorization, and quadrate equation. PENDAHULUAN Banyak permasalahan dalam kehidupan yang pemecahannya terkait dengan konsep dan aturan-aturan dalam matematika. Secara khusus keterkaitan konsep dan prinsip-prinsip persamaan kuadrat, sering kita temukan dalam permasalahan kehidupan nyata yang menyatu/bersumber dari fakta dan lingkungan budaya kita. Konsep persamaan kuadrat dapat dibangun/ditemukan di dalam pemecahan permasalahan yang kita hadapi. METODE PENELITIAN Metode penelitian yang digunakan dalam penelitian adalah studi literatur. Menurut Danial dan Warsiah, Studi Literatur adalah merupakan penelitian yang dilakukan oleh peneliti dengan mengumpulkan sejumlah buku buku, majalah yang berkaitan dengan masalah dan tujuan penelitian. Dalam penelitian ini menggunakan teorema-teorema yang berlaku pada konsep persamaan kuadrat. HASIL DAN PEMBAHASAN Persamaan kuadrat dalam x adalah suatu persamaan berbentuk ax2 + bx + c = 0, dengan a, b, dan c bilangan real dan a ≠ 0. Nilai x yang memenuhi persamaan ax2 + bx + c = 0 disebut akar-akar persamaan kuadrat. Berkaitan dengan nilai-nilai dari a, b, c dikenal beberapa nama persamaan kuadrat, diantaranya adalah a. Jika a = 1, maka persamaan menjadi x2 + bx + c = 0 dan persaman seperti ini disebut persamaan kuadrat biasa. b. Jika b = 0, maka persamaan menjadi ax2 + c = 0 dan persamaan seperti ini disebut persamaan kuadrat sempurna. c. Jika c = 0, maka persamaan menjadi ax2 + bx = 0 dan persamaan seperti ini disebut persamaan kuadrat tak-lengkap. d. Jika a,b, dan c bilangan-bilangan real, maka ax2 + bx + c = 0 disebut peramaan kuadrat real. e. Jikaa a,b, dan c bilangan-bilangan rasional, maka ax2 + bx + c = 0 disebut persamaan kuadrat rasional. Ciri-ciri persamaan kuadrat yaitu Sebuah persamaan, pangkat tertinggi variabelnya adalah 2 dan pangkat terendah adalah 0, koefisien variabelnya adalah bilangan real, koefisien variabel berpangkat 2 tidak sama dengan nol, koefisien variabel berpangkat 1 dan 0 dapat bernilai 0. Ada beberapa cara aturan menentukan akar-akar penyelesaian persamaan kuadrat. Aturan tersebut antara lain, cara memfaktorkan, melengkapkan kuadrat sempurna, dan rumus kuadrat. Ketiga aturan ini memiliki kelebihan dan kelemahan terkait dengan efisiensi waktu yang digunakan untuk menentukan akar-akar sebuah persamaan kuadrat. Semua persamaan kuadrat memiliki dua jawaban atau dua akar. Akar-akar itu bisa berupa salah satu dari tiga kemungkinan berikut, yaitu 1. Bilangan riil dan berbeda satu sama lain. Contohnya ialah persamaan kuadrat      memiliki akar x =2 dan x = 5. Di sini, akarnya ada dua, dan nilainya berbeda satu sama lain. 2. Bilangan riil dan keduanya sama nilainya. Contohnya ialah persamaan kuadrat       memiliki dua akar yang sama yaitu x = 3. 3. Bilangan imajiner kompleks. Contohnya ialah persamaan kuadrat + 9 = 0 memiliki akar-akar imajiner x =  atau x =  Penyelesaian akar-akar persamaan kuadrat salah satunya dikemukakan oleh William A. Donnel [1], memaparkan bahwa persamaan kuadrat dengan koefisien bulat dapat difaktorkan terhadap bilangan bulat, diskriminannya sama dengan kuadrat sempurna. Koefisien b pada persamaan kuadrat dapat dibagi menjadi jumlah dari dua bilangan bulat yang hasilkalinya sama dengan hasil kali bilangan pada koefisien a dengan konstanta. Dengan menentukan dua bilangan yang memiliki nilai penjumlahan sama dengan nilai b, kemudian menyederhanakan bentuk persamaan kuadrat berdasarkan dari nilai dua bilangan yang diperoleh maka akar-akar persamaan kuadrat dapat ditentukan. Apabila dalam menentukan akar-akar persamaan kuadrat tidak bisa dilakukan dengan pemfaktoran, maka dapat menggunakan rumus ABC x1,2 =    . Rumus ABC ini ternyata adalah bangun umum untuk akar sesuatu persamaan kuadrat. Namun, ada alternatif lain yang dapat digunakan untuk mencari akar-akar persamaan kuadrat. Oleh sebab itu, pada artikel ini akan dibahas mengenai alternatif dalam menentukan akar-akar persamaan kuadrat. A. Memfaktorkan Untuk menyelesaikan persamaan kuadrat dengan cara memfaktorkan, perlu diperhatikan hal-hal berikut i Persamaan dinyatakan dalam bentuk baku sehingga salah satu ruasnya adalah nol, yaitu      atau      ii Kemudian bentuk    difaktorkan , dengan menggunakan sifat; jika pq = 0, maka p = 0 dan q = 0, sehingga langkah penyelesaiannya seperti berikut 1.             Dengan p+q = b dan = c 2.        =0 Dengan p+q = b dan = c B. Melengkapkan kuadrat sempurna Untuk menyelesaikan persamaan kuadrat      dengan melengkapkan kuadrat sempurna, ditempuh langkah-langkah berikut ini i Koefisien  yaitu a adalah 1 atau dibuat menjadi 1 ii Persamaan dinyatakan dalam bentuk + mx = n iii Kedua ruas persamaaan ditambah dengan  iv Persamaan dinyatakan dalam bentuk    = q v    q  x + p =  C. Rumus ABC Untuk menyelesaikan persamaan kuadrat dengan rumus, perlu diperhatikan hal-hal berikut i Persamaan harus dinyatakan dalam bentuk baku persamaan kuadrat, yaitu      ii Tentukan nilai a, b, dan c iii Gunakan rumus penyelesaikan persamaan kuadrat berikut ini x1,2 =    Dari rumus di atas tampak bahwa penyelesaian atau akar-akar suatu persamaan kuadrat sangat ditentukan oleh nilai  . Bentuk disebut diskriminan dari persamaan kuadrat      dan dilambangkan dengan huruf D, sehingga D =  . Pemberian nama diskriminan D =   masuk akal, sebab nilai D =   inilah yang membedakan mendiskriminasikan jenis akar-akar suatu persamaan kuadrat. Dari rumus ABC diatas, diperoleh hubungan  Penjumlahan akar-akarnya   = -  Perkalian akar-akarnya  =   Selisih akar-akarnya   =  Jenis akar-akar persamaan kuadrat  D   akar-akarnya real/nyata  D   akar-akarnya real dan berlainan  D   akar-akarnya real dan kembar  D   akar-akarnya imajiner/tidak real/khayal D. Alternatif Lain Terlebih dahulu menentukan tanda dari akar-akar persamaan kuadrat sebelum menentukan akar-akar persamaan kuadrat. Aturan tanda dari akar-akar persamaan kuadrat adalah sebagai berikut 1. Pada persamaan ax2 + bx + c = 0, jika a dan c memiliki tanda yang berlawanan maka kedua akar memiliki tanda yang berlawanan. 2. Pada persamaan ax2 + bx + c = 0, jika a dan c memiliki tanda yang sama, maka a. Jika a dan b memiliki tanda yang sama maka akar-akar persamaan kuadrat merupakan akar-akar yang negatif. b. Jika a dan b memiliki tanda yang berlawanan, maka akar-akar persamaan kuadrat merupakan akar-akar yang positif. Setelah menentukan aturan tanda, maka persamaan kuadrat dapat diselesaikan.. Berikut metode lain dalam menyelesaikan akar-akar persamaan kuadrat. 1. Metode Transformasi Metode transformasi merupakan metode yang dilakukan dengan menyederhanakan bentuk ax2 + bx + c = 0 menjadi persamaan baru dengan a = 1 dan c dikalikan dengan a, sehingga diperoleh persamaan   . Persamaan asli dan persamaan baru merupakan dua persamaan yang berbeda yang memiliki nilai akar-akar yang berbeda, namun keduanya dapat berhubungan melalui suatu variabel. Misalkan y = ax maka x = . Lalu mensubstitusikan nilai x ke dalam persamaan asli maka akan diperoleh nilai akar-akar persamaan kuadrat , . Sebagai contoh akan dicari akar-akar dari persamaan     , Lalu diubah menjadi persamaan baru sesuai dengan aturan metode transformasi          Dengan a = 1; b = 25; c = 84 Menurut aturan tanda persamaan kuadrat, akar-akarnya bernilai negatif karena a, b, dan c memiliki tanda yang sama. Maka nilai-nilai faktor dari 84 adalah -84,-1, -42,-2, -28,-3, -21,-4, -14,-6, -12,-7. Dari nilai faktor diperoleh 21+ 4 = 25 = b, maka faktornya adalah dan 4. Lalu dimisalkan nilai faktor tersebut  dan  maka selanjutnya dapat ditentukan akar-akar persamaan kuadrat dengan cara  =  =3  =  = 2. Metode Silang Metode Silang merupakan salah satu metode dalam mencari akar-akar persamaan kuadrat yang telah diterapkan di beberapa negara seperti Amerika Serikat dan Singapura. Penggunaan metode silang dipandang lebih sederhana dan menampilkan visualisasi dibanding penggunaan logika atau penyusunan tabel yang panjang. Diharapkan dengan memberikan visualisasi mengenai pencarian akar persamaan kuadrat siswa dapat mengingat langkah-langkahnya dengan lebih mudah. Pada persamaan kuadrat ax2 + bx + c = 0 dengan a 1, maka dapat menggunakan metode silang untuk menyelesaikannya. Ada enam tahap dalam mencari akar-akar persamaan kuadrat menggunakan metode silang Contoh Tentukan akar-akar persamaan kuadrat      a = 3, b= 14 dan c= 15 1 Menentukan faktor dari  dan 15 Faktor dari  = x  3x Faktor dari 15 = +5  +3 2 Menuliskan faktor- faktor seperti berikut ini 3. Mengalikan secara silang faktor-faktor tersebut dan menuliskan hasilnya di kolom sebelah kanan 4 Menjumlahkan kolom sebelah kanan. apabila hasil penjumlahan tersebut tidak sama dengan b 14x pada persamaan kuadrat      maka kombinasi faktor salah 5 Kesalahan kombinasi yang paling mungkin adalah kombinasi untuk konstanta maka perbaiki 6 Karena kombinasi pada tahap 5 sudah sesuai maka pemfaktoran sudah selesai dan dapat menyusun hasil pemfaktoran          KESIMPULAN DAN SARAN Dari hasil pembahasan penelitian ini, dapat disimpulkan bahwa penyelesaian persamaan kuadrat tidak hanya dapat dilakukan dengan tiga cara yang sudah ada sebelumnya yaitu pemfaktoran, melengkapkan kuadrat sempurna dan rumus kuadrat. Dengan metode yang sudah ada dapat dikembangkan metode lainnya untuk menyelesaikan persamaan kuadrat. Metode transformasi dan metode silang termasuk metode lain yang dapat digunakan dalam menyelesaikan persamaan kuadrat. Metode transformasi merupakan metode yang sederhana dengan menggunakan konsep pemfaktoran lalu menentukan faktor-faktor dari koefisien persamaan kuadrat dan menentukan jumlah faktor sama dengan nilai –b maka dapat menentukan akar-akar persamaan kuadratnya. Metode silang juga merupakan metode yang sederhana yang bisa membantu untuk menyelesaikan persoalan persamaan kuadrat. Bagi pembaca yang tertarik dengan penelitian ini, disarankan untuk membahas tentang akar-akar persamaan kuadrat. DAFTAR PUSTAKA [1] Adinawan, M Cholik, Sugijono, Seribu Pena Matematika SLTP Kelas 3, Erlangga, Jakarta, 1999. [2] Adinawan, M Cholik, Sugijono, Seribu Pena Matematika SMP Untuk kelas IX, Erlangga, Jakarta, 2004. [3] Dharmawan, Eko Prasetyo, Pengantar Aljabar, PT Prestasi Pustakarya, Jakarta, 2011. [4] Donnel, WA, Elementary Theory Of factoring Trinomials With Integer Coefficient Over The Integers, International Journal Of Mathematical Education in Science and technology, 2010 1114-1121 [5] Nashiruddin, M, Babat Habis UN Matematika SMA IPA, CV. Andi Offset, Yogyakarta, 2013. [6] Putri, Syamsudhuha, dan Ihda Hasbiyati, Strategi Pengajaran Matematika Untuk Menentukan Akar-Akar Persamaan Kuadrat, Jurnal Matematics Paedagogic, 2018 91-95 [7] Putri, Syamsudhuha, dan Ihda Hasbiyati, Alternatif Menentukan AkarAkar Persamaan Kuadrat Yang Bukan Bilangan Bulat, Jurnal Sains Matematika dan Statistika, 2016 81-86 [8] Saltzherr, dkk, Aljabar dan Teori Berhitung, PT Pradnya Paramita, Jakarta, 2004 [9] Setyaningtyas, Yuliand, Matematika Terupdate SMA IPA, Kompas Ilmu, Jakarta, 2015. [10] Tampomas, Husein, Seribu Pena Matematika Jilid 1 untuk SMA/MA Kelas X, Erlangga, Jakarta, 2007. [11] Tim Penulis, Big Book Matematika SMA, Cmedia, Jakarta, 2015. [12] Tim Penulis, Matematika Kelas X, Kementerian Pendidikan dan Kebudayaan, Jakarta, 2014. [13] Wirodikromo, Sartono, Matematika untuk SMA Kelas X, Erlangga, Jakarta, 2002. ResearchGate has not been able to resolve any citations for this A. DonnellAn important component of intermediate and college algebra courses involves teaching students methods to factor a trinomial with integer coefficients over the integers. The aim of this article is to present a theoretical justification of that which is often taught, but really never explained as to why it works. The theory is presented, and a suggestion for an inquiry-based learning project is AdinawanCholikAdinawan, M Cholik, Sugijono, Seribu Pena Matematika SLTP Kelas 3, Erlangga, Jakarta, Pena Matematika SMP Untuk kelas IXM AdinawanCholikSugijonoAdinawan, M Cholik, Sugijono, Seribu Pena Matematika SMP Untuk kelas IX, Erlangga, Jakarta, P PutriSyamsudhuhaIhda DanHasbiyatiPutri, Syamsudhuha, dan Ihda Hasbiyati, Strategi Pengajaran Matematika Untuk Menentukan Akar-Akar Persamaan Kuadrat, Jurnal Matematics Paedagogic, 2018 91-95J P SaltzherrAljabar Dan TeoriBerhitungSaltzherr, dkk, Aljabar dan Teori Berhitung, PT Pradnya Paramita, Jakarta, 2004Seribu Pena Matematika Jilid 1 untuk SMA/MA Kelas XHusein TampomasTampomas, Husein, Seribu Pena Matematika Jilid 1 untuk SMA/MA Kelas X, Erlangga, Jakarta, 2007. Foto Hai Quipperian, bagaimana kabarnya? Semoga selalu sehat dan tetap semangat belajar, ya! Meskipun di rumah saja, jangan sia-siakan waktumu dengan hal-hal yang kurang bermanfaat. Tetaplah belajar, belajar, dan belajar. Jika kamu butuh teman untuk belajar, Quipper Blog siap menemanimu. Siapa yang hobi menonton sepak bola? Saat menonton sepak bola, tentu kamu pernah melihat sang pemain menendang bola dengan sudut tertentu sampai bola bisa membentuk lintasan parabola. Bagi seorang ilmuwan, lintasan bola yang berbentuk parabola tidak hanya sekadar lintasan biasa. Banyak besaran yang bisa ditentukan dari bentuk lintasan bola tersebut, contohnya sudut tendangan, kecepatan bola di titik tertinggi, dan lain-lain. Besaran itu semua bisa ditentukan melalui suatu fungsi yang disebut fungsi kuadrat. Nah, persamaannya disebut persamaan kuadrat. Ingin tahu bagaimana bentuk persamaan kuadrat? Check this out! Pengertian Persamaan Kuadrat Foto Persamaan kuadrat adalah persamaan yang variabelnya memiliki pangkat tertinggi sama dengan dua 2. Adapun bentuk umum persamaan kuadrat adalah sebagai berikut. ax2 + bx + c = 0 Keterangan a, b = koefisien a ≠ 0; x = variabel; dan c = konstanta. Jenis-Jenis Persamaan Kuadrat Foto Secara umum, persamaan kuadrat dibagi menjadi empat, yaitu sebagai berikut. 1. Persamaan Kuadrat Biasa Persamaan kuadrat biasa adalah persamaan kuadrat yang nilai a = 1. Berikut ini contohnya. x2 + 3x + 2 = 0 2. Persamaan Kuadrat Murni Persamaan kuadrat murni adalah persamaan kuadrat yang nilai b = 0. Berikut ini contohnya. x2 + 2 = 0 3. Persamaan Kuadrat Tak Lengkap Persamaan kuadrat tak lengkap adalah persamaan kuadrat yang nilai c = 0. Berikut ini contohnya. x2 + 3x = 0 4. Persamaan Kuadrat Rasional Persamaan kuadrat rasional adalah persamaan kuadrat yang nilai koefisien dan konstantanya berupa bilangan rasional. Berikut ini contohnya. 4x2 + 3x + 2 = 0 Cara Menentukan Akar Persamaan Kuadrat Foto Akar persamaan kuadrat merupakan salah satu faktor penting yang harus bisa kamu tentukan dalam penyelesaian persamaan kuadrat. Ada beberapa cara yang bisa kamu gunakan untuk mencari akar pada persamaan kuadrat, yaitu sebagai berikut. 1. Faktorisasi Faktorisasi adalah penjumlahan suku aljabar menjadi bentuk perkalian faktornya. Jika kamu melakukan faktorisasi persamaan kuadrat, artinya kamu membuat perkalian dua buah persamaan linear. ax2 + bx + c = 0 b = hasil penjumlahan antara suku ke-1 dan ke-2 c = hasil perkalian antara suku ke-1 dan ke-2 Perhatikan contoh berikut. Bentuk persamaan kuadrat x2 + 5x + 6 = 0 Bentuk faktorisasi x + 3 x + 2 = 0 Akar x = -3 atau x = -2 Bentuk persamaan kuadrat x2 – 9 = 0 Bentuk faktorisasi x – 3x + 3 = 0 Akar x = 3 atau x = -3 2. Melengkapkan Kuadrat Sempurna Bentuk ax2 + bx + c = 0 bisa kamu jabarkan menjadi seperti berikut. x + p2 = q Perhatikan contoh berikut. Bentuk persamaan kuadrat x2 + 5x + 6 = 0 x2 + 8x + 6 = 0 x2 + 8x = -6 x2 + 8x +16 = -6 +16 x + 42 = 10 x + 4 = ± √10 x = √10 – 4 atau x = -√10 – 4 3. Menggunakan Rumus abc Adapun persamaan rumus abc adalah sebagai berikut. Perhatikan contoh berikut. Tentukan akar persamaan x2 – 4x – 5 = 0! Diketahui a = 1, b = -4, dan c = -5 Substitusikan nilai a, b, dan c ke persamaan abc. Jadi, akar persamaan x2 – 4x – 5 = 0 adalah x = 5 atau x = -1. Jenis-Jenis Akar Persamaan Kuadrat Foto Sebelum membahas tentang jenis akar persamaan kuadrat, kamu akan dikenalkan terlebih dahulu dengan istilah diskriminan. Apa itu diskriminan? Diskriminan atau biasa dilambangkan D adalah hubungan antarkoefisien yang menentukan besar dan jenis akar persamaan kuadrat. Pada pembahasan sebelumnya, kamu sudah mengenal rumus abc, yaitu sebagai berikut. Dari persamaan di atas, besaran yang dimaksud diskriminan adalah b2 – 4ac. Dengan demikian, persamaan rumus abc menjadi seperti berikut. Nah, jenis akar persamaan kuadrat ternyata bergantung pada nilai dari determinannya D. Berikut ini penjelasannya. Jika nilai D > 0, maka suatu persamaan kuadrat akan memiliki dua akar real yang tidak sama besar x1 ≠ x2. Jika nilai D = 0, maka suatu persamaan kuadrat akan memiliki dua akar real dan kembar. Jika nilai D < 0, maka suatu persamaan kuadrat tidak memiliki akar real akarnya imajiner. Jika persamaan kuadrat ditulis dalam bentuk grafik, akan muncul grafik parabola seperti bentuk lintasan bola yang ditendang dengan kemiringan tertentu. Agar pemahamanmu semakin cling-cling, yuk simak contoh soal berikut. Contoh Soal 1 Berapakah akar persamaan kuadrat dari x2 + 9x + 18 = 0? Pembahasan Ingat bahwa konstanta 18 bisa dibentuk oleh hasil perkalian antara 6 dan 3. Hal itu karena penjumlahan antara 6 dan 3 menghasilkan 9 nilai b. Dengan demikian, berlaku x2 + 9x + 18 = 0 x + 6x + 3 = 0 x = -6 atau x = -3 Jadi, akar persamaan kuadrat x2 + 9x + 18 = 0 adalah -6 atau -3. Contoh Soal 2 Tentukan jenis akar persamaan kuadrat x2 + 16x + 64 = 0! Pembahasan Ingat, untuk menentukan jenis akar, kamu harus mencari nilai determinannya. x2 – 64 = 0 a = 1 b = 16 c = 64 D = 162 – 4 . 1 . -64 = 256 – 256 = 0 Oleh karena nilai D = 0, maka persamaan x2 + 16x + 64 = 0 memiliki dua akar yang kembar sama dan real. Contoh Soal 3 Tentukan akar persamaan 2x2 – 8x + 7 = 0 menggunakan rumus abc! Pembahasan Diketahui a = 2, b = -8, dan c = 7 Substitusikan nilai a, b, dan c ke persamaan abc. Jadi, akar persamaan 2x2 – 8x + 7 = 0 adalah 4,5 atau -1,5. Bagaimana Quipperian, mudah bukan? Semoga materi ini bisa bermanfaat buat kamu semua, ya. Tetap semangat belajar dan selalu jaga kesehatan serta kebersihan. Jika kamu bosan belajar sendirian, jadikan Quipper Video sebagai mitra yang menyenangkan. Di sana, kamu akan diajar oleh para tutor andal lewat video, rangkuman, dan latihan soal. Salam Quipper! [spoiler title=SUMBER] Penulis Eka Viandari X² - 3x - 1 ; diperoleh p = 1, q = -3, r =-1a + b= -q/p = -3/1 = = c/p = -1/1 = -1a⁴ + 6a²b² + b⁴= a + b⁴ - 4a³b - 4ab³= a + b⁴ - 4aba² + b²= a + b⁴ - 4aba + b² - 2ab = 3⁴ - 4-13² - 2-1 = 81 + 49 + 2= 81 + 44= 125cmiiw X^2 - 3x - 1 = 0a + b = -3/1 = 3ab = -1/1 = -1a^2 + b^2 = a + b^2 - 2ab = 3^2 - 2-1 = 9 + 2 = 11a^4 + 6a^2b^2 + b^4 = a^4 + 2a^2b^2 + b^4 + 4a^2b^2= a^2 + b^2^2 + 4ab^2= 11^2 + 4-1^2= 121 + 4= 125 a^4 + 2a^2b^2 + b^4 udah berubah jadi a^2 + b^2^2 yang 2a^2b^2 kok gak dihitung juga? Mencari Akar-akar persamaan Kuadrat – Jika sobat punya persamaan kuadrat maka penyelesaian persamaa tersebut adalah dengan mencari akar-akar persamaan kuadrat nya. Berikut ini cara mencari akar persamaan kuadrat. 1. Mencari akar persamaan kuadrat dengan pemfaktoran Namanya pemfaktoran, jadi intinya mencari faktor nilai x. Mencari akar persamaan kuadrat dengan faktor berarti kita berpikir flash back. Untuk medapatkan akar persamaan kuadrat kita berpikir dari mana asal suatu persamaan kuadrat? contoh sederhananya Persamaan Kuadrat x2 + 8x – 9 maka faktornya adalah x+9 x-1 sama kaya sobat ditanya DimSum itu terbuat dari apa? Atau Es Cream ini terbuat dari apa? Ini lebih susah daripada ketika sobat diminta mencari hasil dari x+9 x-1 pasti akan mudah mendapatkan hasil x2 + 9x -x – 9 –> x2 + 8x – 9 Berikut ini cara mudah mencari akar persamaan kuadrat dengan pemfaktoran Contoh Soal 1 sederhana carilah akar persamaan kuadrat dari x2-6x+5= 0 Cari 2 bilangan yang ditambahkan = b dan dikalikan = Cari nilai 1×5 = 5 Cari Faktor dari 5 yang bisa menghasilkan angka -6–> -5 dan -1 Tulis Ulang Persamaan Menjadi x2-6x+5 = 0 x2-5x-x+5 = 0 xx-5-x+5 = 0 xx-5-x-5 = 0 x-1 x-5 = 0 –> selesai Sebenarnya untuk soal sederhana itu mencari akar persamaan kuadratnya cukup di awang-awang bisa. Namun untuk soal yang lebih susah, cara di atas akan sangat membantu. Mari simak contoh soal 2 Contoh Soal 2 medium carilah akar persamaan kuadrat dari 2x2-25x+63 = 0 —> bisa di awang-awang tapi aga susah Cari 2 bilangan yang ditambahkan = b dan dikalikan = Cari nilai 2×63 = 126 Cari Faktor dari 126 yang bisa menghasilkan angka -25 faktor 126 1,2,3,7, 9, 18, 63 –> -7 dan -18 7 dan 18 untuk penentuan ini sobat harus sering-latihan, saran ” carilah faktor yang tengah-tengah tidak terlalu kecil ex1,2,3 dan tidak terlalu besar.” Tulis Ulang Persamaan Menjadi 2x2-25x+63 = 0 2x2-18x-7x+63 = 0 2xx-9-7x-9 = 0 pakai aturan asosiasi, semoga paham 2x-7 x-9 = 0 selesai mudah bukan 😀 Contoh mencari akar persamaan kuadarat dengan bentuk berbeda 4x2 – 5x = 0 4xx-5 = 0 4x = 0 atau x-5 = 0 —> x = 0 atau x = 5 x2 – 4 = 0 –> jika ada a2–b2 bisa diubah mejadi a-b a+b x-√4 x+√4 = 0 —> x =2 atau x = -2 x2 – 16 = 0 x-√16 x+√16 = 0 x-4 x+4 = 0 -4 dan 4 ada 2 nilai x untuk akar persamaan kuadrat tersebut Biar lebih lancar silahkan dicoba mencari akar persamaan kuadrat dari soal-soal berikut ini x 2 + 4x –12 = 0 x 2 – 10 x = – 21 x 2 + 7 x + 12 = 0 3 x 2 – x – 2 = 0 x 2 + 8 x = –15 2. Mencari Akar Persamaan Kuadrat dengan Rumus ABC rumus kecap Dalam beberapa soal sobat, akar persamaan kuadrat kadang ada yang tidak bisa dicari akar persamaan kuadratnya dengan melalui pemfaktoran seperti x2+ 8 x +9 = 0 Jadi? Soalnya bonus dong?. Hahaha ngga. Masih ada cara lain untuk mencari akar persamaan kuadratnya, yaitu pakai rumus ABC sebagai berikut rumus ABC tanda ± menandakan ada 2 kemungkinan akar persamaan kuadratnya x1 = -b ± √[b2 – 4ac] / 2a x2 = -b ± √[b2 – 4ac] / 2a Contoh Soal x2– 8x +9 = 0 x = -b ± √[b2 – 4ac] / 2a x = 8 ± √[64 – 419] / 21 = 8 ± √[64 -36] / 2 = 4 ± √28 / 2 = 4 ± 2√7 / 2 = 2 ± √7 x1 = 2 + √7 x1 = 2 – √7 3. Mencari Akar Persamaan Kuadrat dengan Melengkapkan Kuadrat Sempurna Cara ini cukup sederhana, kita hanya perlu melakukan sedikit manipulasi untuk menemukan akar persamaan kuadrat dari suatu persamaan. Contoh di nomor 2 coba kita cari akar persamaan kuadratnya dengan cara ini x2+ 8 x +9 = 0 x 2 + 8 x +9 + 7= 0 + 7 masing-masing ruas ditambah 7 x 2 + 8 x + 16 = 7 x+4 2 = 7 ruas kiri dijadikan bentuk kuadrat x+4 = ± √7 jadi x = 4 + √7 atau x = 4 – √7 Tidak terlalu sudah kan. Kalau sobat paham prinsip mencari akar persamaan kuadrat dan sering latihan soal persamaan kuadrat pasti InsyaAlloh bisa. Ok, semoga bermanfaat. Semangat Belajarnya.. 😀 Reader Interactions

jika a dan b adalah akar akar persamaan kuadrat